资源类型

期刊论文 77

会议视频 2

年份

2023 18

2022 13

2021 13

2020 7

2019 2

2018 2

2017 2

2016 2

2015 1

2014 10

2013 1

2010 1

2009 3

2008 2

2007 2

展开 ︾

关键词

反渗透 2

气体分离 2

绿色化工 2

膜分离 2

CCS 1

CO2分离 1

CO2捕集 1

“上限” 1

两亲高分子 1

中空纤维 1

二氧化碳捕集 1

亲CO2分离膜 1

亲水 1

仿生与生物启发膜 1

仿生矿化 1

仿生黏合 1

传递阻力 1

促进传递膜 1

先进制造 1

展开 ︾

检索范围:

排序: 展示方式:

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1625-0

摘要:

● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.

关键词: Ion-exchange membranes     Selectivity     Separations    

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 775-792 doi: 10.1007/s11705-020-1991-0

摘要: The rapid industrial growth and the necessity of recovering and recycling raw materials increased the interest in the production of highly selective and efficient separation tools. In this perspective, a relevant input was given by the membrane-based technology and the production of imprinted membranes, which possess specific recognition properties at molecular and ionic level, offers the possibility of developing sustainable and green processes. Furthermore, the integration of imprinted membranes with traditional or membrane-based approaches is a promising strategy in the logic of process intensification, which means the combination of different operations in a single apparatus. This work discusses the concept and separation mechanisms of imprinted membranes. Furthermore, it presents an overview of their application in organic solvent nanofiltration, for the removal of toxic agents and recovery solvent, as well as valuable compounds. The recent advances in water treatment, such as pesticide removal and recovery of metal ions, are also discussed. Finally, potential applications of imprinted membranes in hybrid processes are highlighted, and a look into the future of membrane separations for water treatment and recovery of critical raw materials is offered.

关键词: sustainable processes     membrane separation     molecular recognition     imprinted membranes     water treatment    

Bioinspired and biomimetic membranes for water purification and chemical separation: A review

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1412-8

摘要:

•The history of biological and artificial water channels is reviewed.

关键词: Aquaporins     Artificial water channels     Biomimetic membranes     Chemical separation and water purification    

Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1837-1865 doi: 10.1007/s11705-023-2347-3

摘要: Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements and developments

关键词: Surface modification techniques    

Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications

Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 793-819 doi: 10.1007/s11705-020-2016-8

摘要: Two-dimensional (2D) materials have emerged as a class of promising materials to prepare high-performance 2D membranes for various separation applications. The precise control of the interlayer nanochannel/sub-nanochannel between nanosheets or the pore size of nanosheets within 2D membranes enables 2D membranes to achieve promising molecular sieving performance. To date, many 2D membranes with high permeability and high selectivity have been reported, exhibiting high separation performance. This review presents the development, progress, and recent breakthrough of different types of 2D membranes, including membranes based on porous and non-porous 2D nanosheets for various separations. Separation mechanism of 2D membranes and their fabrication methods are also reviewed. Last but not the least, challenges and future directions of 2D membranes for wide utilization are discussed in brief.

关键词: membrane separation     2D membranes     2D materials     nanosheet    

Special issue on “Membranes and Water Treatment”

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 561-563 doi: 10.1007/s11705-021-2136-9

Perspective of mixed matrix membranes for carbon capture

Shinji Kanehashi, Colin A. Scholes

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 460-469 doi: 10.1007/s11705-019-1881-5

摘要: Polymeric membrane-based gas separation has found wide applications in industry, such as carbon capture, hydrogen recovery, natural gas sweetening, as well as oxygen enrichment. Commercial gas separation membranes are required to have high gas permeability and selectivity, while being cost-effective to process. Mixed matrix membranes (MMMs) have a composite structure that consists of polymers and fillers, therefore featuring the advantages of both materials. Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties, such as mechanical strength and thermal stability. This perspective describes potential use of MMMs for carbon capture applications, explores their limitations in fabrication and methods to overcome them, and addresses their performance under industry gas conditions.

关键词: membranes     polymeric     mixed matrix     impurities    

Regularly channeled MXene membranes for ionic and molecular separation

Jingchong Liu, Nü Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 591-594 doi: 10.1007/s11705-020-1966-1

Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

LU Yangcheng, WU Yingxin

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 204-208 doi: 10.1007/s11705-008-0027-y

摘要: To control the morphology of cellulose membranes used for separation, they were prepared by the NMMO method using water, methanol, ethanol and their binary solution as coagulation baths. Morphologies of the surface and cross section of dry membranes were observed. The pore structure parameters of wet membranes were determined. By comparison, the process and mechanism of pore formation in dry membranes were suggested, and the relativity of cellulose crystal size to average pore diameter in wet membranes and their influences were discussed. The results show that the morphology of dry membranes is clearly varied with coagulation baths, while the porosity of wet membranes is almost constant. Porous structures can appear in the compact region of dry membranes due to swelling from water. These pores have a virtual effect on the average pore diameter of wet membranes. By changing the composition of coagulation baths, the microstructure of cellulose membranes in a dry or wet environment can be adjusted separately.

关键词: comparison     NMMO     constant     diameter     process    

Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1389-3

摘要:

•HAAs was dominant among the DBPs of interest.

关键词: MBR     Biofouling     EPS     Chemical cleaning     DBPs     CLSM    

altering crosslinker chemistry during interfacial polymerization on the performance of nanofiltration membranes

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2025-2036 doi: 10.1007/s11705-023-2356-2

摘要: Chemistry of the polyamide active layer of a desalination membrane is critical in determining both its physical and chemical properties. In this study, we designed and fabricated three novel membranes with different active layers using the crosslinkers: terephthaloyl chloride, isophthaloyl chloride, and trimesoyl chloride. The crosslinkers were reacted with an aqueous solution of an aliphatic tetra-amine. Because these crosslinkers differ in their structures and crosslinking mechanisms during interfacial polymerization, the resultant membranes also possess different structural properties. The water contact angle of the fabricated membranes also varies; the water contact angles of 4A-3P-TPC@PSF/PET, 4A-3P-TMC@PSF/PET, and 4A-3P-IPC@PSF/PET, are 68.9°, 65.6°, and 53.9°, respectively. Similarly, the desalination performance of resultant membranes also showed variations, with 4A-3P-TPC@PSF/PET, 4A-3P-IPC@PSF/PET, and 4A-3P-TMC@PSF/PET having a permeate flux of 17.14, 25.70, and 30.90 L·m−2·h−1, respectively, at 2.5 MPa. The 4A-3P-TPC@PSF/PET membrane exhibited extensive crosslinking with aliphatic linear amine, and cationic dye rhodamine B, MgCl2, and amitriptyline rejection rates of 98.6%, 92.7% and 80.9%, respectively. The 4A-3P-TMC@PSF/PET membrane showed mediocre performance, while 4A-3P-IPC@PSF/PET membrane showed even lower performance, with a 35% rejection of methyl orange dye.

关键词: acid chlorides     covalent crosslinking     desalination     linear aliphatic amine     micropollutant removal     thin film composite membranes    

Polymer-nanoinorganic particles composite membranes: a brief overview

Zhen-liang XU, Li-yun YU, Ling-feng HAN

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 318-329 doi: 10.1007/s11705-009-0199-0

摘要: Polymer-nanoinorganic particles composite membranes present an interesting approach for improving the physical and chemical, as well as separation properties of polymer membranes, because they possess characteristics of both organic and inorganic membranes such as good permeability, selectivity, mechanical strength, thermal stability and so on. The preparations and structures of polymer-nanoinorganic particles composite membranes and their unique properties are reviewed.

关键词: polymer     nanoinorganic particles     composite membranes    

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1470-1483 doi: 10.1007/s11705-023-2329-5

摘要: In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.

关键词: forward osmosis membrane     graphene oxide quantum dots     graft modification     anti-fouling membrane     XDLVO theory    

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 745-754 doi: 10.1007/s11705-021-2038-x

摘要: Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

关键词: block copolymers     selective swelling     ultrafiltration     CaCO3 nanoparticles     sacrificial nanofillers    

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1550-7

摘要:

• A fine fibre (40–60 nm diameter) interlayer (~1 µm thickness) was electrospun.

关键词: Forward osmosis     Electro-spinning     Interfacial polymerisation     Fouling     Polyvinylidene fluoride    

标题 作者 时间 类型 操作

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

期刊论文

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

期刊论文

Bioinspired and biomimetic membranes for water purification and chemical separation: A review

期刊论文

Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements

期刊论文

Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications

Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang

期刊论文

Special issue on “Membranes and Water Treatment”

期刊论文

Perspective of mixed matrix membranes for carbon capture

Shinji Kanehashi, Colin A. Scholes

期刊论文

Regularly channeled MXene membranes for ionic and molecular separation

Jingchong Liu, Nü Wang

期刊论文

Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

LU Yangcheng, WU Yingxin

期刊论文

Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane

期刊论文

altering crosslinker chemistry during interfacial polymerization on the performance of nanofiltration membranes

期刊论文

Polymer-nanoinorganic particles composite membranes: a brief overview

Zhen-liang XU, Li-yun YU, Ling-feng HAN

期刊论文

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

期刊论文

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and

期刊论文

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

期刊论文